

Rashtriya Chemicals & **Fertilisers**

ISO 14001: 2004 APPROVED BY IRQS IRQS

MGMT SYS **RvA** C 375

IRQS approved OHSAS 18001

IRQS

(भारत सरकार का उपक्रम)

(Government of India Undertaking)

थळ इकाई, थळ, तालुका अलिबाग, जिला रायगड (महाराष्ट्र) पिन - 402 208.

टेलिग्राम : फर्टिलाइजर्स, थळ ● फॅक्स : 02141 - 238206/238091 - PH. No. 238580 DID Line THAL UNIT, THAL, TALUKA ALIBAG, DIST. RAIGAD (MAHARASHTRA) PIN - 402 208.

TELEGRAM : FERTILIZERS, THAL ● FAX : 02141-238206/238091 ● E-MAIL : rcfgmoff@bom.5.vsnl.net in

TH / 90 / RCF / Project /04 / 13

19th April 2013

To, Dr. A. Mehrotra, Director (S), Ministry of Environment & Forests, Regional Office, Western Region, Kendriya Paryavaran Bhavan, Link Road. No. 3, Ravi Shankar Nagar, Bhopal - 462 016.

Sub: Submission of Six Monthly Compliance Report on Expansion of Fertilizer unit by installing stream of Ammonia (2200 MTPD) & Urea (3500 MTPD) at Thal Fertilizer Complex, District Raigad, Mharashtra by M/s Rashtriya Chemicals & Fertilizers Ltd. for the period from October - 2012 to March 2013.

Ref: 1) MOEF Office Memorandum No. J-11011/1291/2007-1A-II (I) Dated: 10th September 2012.

Dear Sir.

We submit herewith six monthly compliance report for Expansion of Fertilizer unit by installing stream of Ammonia (2200 MTPD & Urea (3500 MTPD) at Thal Fertilizer Complex, District - Raigad, Maharashtra, by M/s Rashtriya Chemicals & Fertilizers Ltd. for the period from October 2012 to March 2013 as per the referred office memorandum of Environment Clearance granted for the following project as mentioned below.

Sr.	Plants & Facilities	Existing (After de-	Proposed Expansion
No.	The second secon	bottlenecking scheme)	Proposed Expansion (Thal –III)
1.	Ammonia Plant	3500 MTPD	1 x 2200 MTPD
2.	Urea plant	6060 MTPD	1 x 3500 MTPD
	a) Power Generation	2 x 15 MW	1 x 18 MW GT Set 1 x 12 MW GT Set
	b) Emergency DG Set	2 x 1600 KVA	2 x 1000 KVA
3.	Steam Generation Facilities		2 X 1000 KVA
	a) HRSG (GT Set)		1 x 120 TPH
4.	a) Auxiliary Boiler (GT Set)		1 x 110 TPH

Application is submitted to Ministry of Environment & Forest for revised capacity of Urea plant from 3500 MTPD to 3850 MTPD. It is recommended by 5th reconstituted Expert Advisory Committee (Industries) meeting of MOEF held during 31st January to 1st February 2013 in MOM point No. 5.6.4.

पंजीकृत कार्यालय : प्रियदर्शिनी, ईस्टन एक्सप्रेस हायवे, सायन मुंबई - 400 022. REGD. Office: PRIYADARSHINI, EASTERN EXPRESS HIGHWAY, SION, MUMBAI-400 022. हम हिन्दी में पत्राचार का खागत करते है ।

The project activities for expansion are yet to be started. The planned zero date of the project is 15.06.2013 subject to clearance from Public Investment Board and Cabinet Committee for Economic Affairs (CCEA). The project proposal is submitted for obtaining PIB clearance by Department of Fertilizer. Application will be submitted for Consent to Establish to State Pollution Control Board at suitable time.

Please find enclosed herewith point-wise compliance status of various stipulations with supporting documents. Also enclosed Reports of Monitoring of Environmental parameters like Ambient Air, Stack emissions, liquid effluent, noise etc. which are conducted on regular basis for existing plants as per statutory norms.

Thanking You.

Yours faithfully, Bhasher Dus

(Bhaskar Das)

Executive Director (Projects)
RCF Thal Unit

Enclosure:

1) Monitoring Report Data Sheet.

2) Six Monthly Compliance Report Point Wise in tabular form with annexure.

CC: for information please.

To,
Dr. P. L. Ahujarai,
Director,
Ministry of Environment & Forests,
CGO Complex, Lodhi Road,
New Delhi - 110 003.

Monitoring the Implementation of Environmental Safeguards Ministry of Environment & Forest Western Region, Regional Office, Bhopal MONITORING REPORT PART – I DATA SHEET

1.	Project type: River- valley/Mining/Industry/Thermal/Nuclear/Other (specify)	Industry
2.	Name of the project	Thal III Expansion Project
3.	Clearance letter (s)/OM No. and date	J-11011/1291/2007-IA. II (I) dated 10.09.2012.
	Amendment in Environment Clearance letter (s)/ OM No. and date	J-11011/1291/2007-IA. II (I) dated 01.05.2013
4.	Location: a) District (s) b) State (s) c) Location Latitude/Longitude	Raigad Maharashtra longitude 72 ⁰ 52'38" East and latitude 18 ⁰ 42'19" North
5.	Address for correspondence a) Address of the Concerned Project Chief Engineer (with Pin Code & telephone/ telex/ fax numbers)	Shri Bhaskar Das, Executive Director (Projects) RCF Thal Vaishet Dist Raigad, Maharashtra Pin 402208 Ph No 02141238137 Fax No 02141 238091
	b) Address of the Executive Project Engineer/ Manager (with Pin Code & telephone/ telex/ fax numbers)	Shri A. B. Khare General Manager (Projects) RCF Thal Vaishet Dist Raigad Maharashtra Pin 402208 Ph No 0214123083 Fax No 02141 238091
6.	Salient features a) Of the project b) Of the Environmental management plans	a) 2200 MTPD Ammonia with NG/RLNG as feedstock and 3850 MTPD prilled Urea (Amendment in Environment Clearance for Urea capacity from 3500 MTPD to 3850 MTPD)
		b) All emissions shall be below prescribed norms. Flare stacks shall be installed for ammonia plant. Stacks of adequate height

		shall be installed for flue gasses to ensure proper dispersion. All condensates shall be recycled after proper treatment. The treated effluent shall be disposed off through existing marine outfall line. The solid waste shall be sold to authorized recyclers.
7.	Break up of the project area a) Submergence area: forest & non-Forest b) Others	a) Nil b) Within boundaries of existing plot.
8.	Break up of the project affected population with enumeration of those losing houses/dwelling units only agricultural land only Both dwelling units & agricultural land & landless laborers/artisans: a) SC, ST/Adivasi b) Others (Please indicate whether these figures are based on any scientific and systematic survey carried out or only provisional figures, if a survey is carried out	Not applicable. This project being brown field expansion, no land acquisition is involved.
	give details & year of survey)	
9.	Financial details: Projects cost as originally planned and subsequent revised estimates and the year of price reference a) Allocation made for environmental management plans with item wise and year wise break-up b) Benefit cost ratio/Internal rate of Return and the year of assessment c) Whether © includes the cost of environmental management as shown in the above d) Actual expenditure incurred on the project so far e) Actual expenditure incurred on the environmental management plans so far	Estimated Project cost is Rs 4115 crores a) The approximate capital cost towards environment protection is US \$ 6 Million. The estimated recurring cost towards environment protection will be of the order of Rs 3 Crores/ Annum. b) IRR: post tax 12.39% Year of assessment 2012 c) Yes d) Approximately Rs 76 lakhs for pre-project activities. e) Nil
10.	 Forest land requirement a) The status of approval for diversion of forest land for non-forestry use b) The status of clearing felling c) The status of compensatory afforestation, if any d) Comments on the viability & sustainability of compensatory afforestation program in the light actual field experience so far 	a) NA b) NA c) NA d) NA
11.	The status of clear felling in non-forest areas (Such as submergence area or reservoir, approach Roads.), if any with quantitative information required.	No construction activity is started till date

Status of construction (Actual &/or planned) a) Date of commencement (Actual &/or planned) b) Date of completion (Actual &/or planned)	 a) No activity started till date. Planned zero date of project is 01.03.2013 subject to grant of PIB and CCEA clearance. b) Planned period of completion is thirty six months from zero date
Reason for the delay I the project is yet to start.	Project proposal is submitted for obtaining PIB clearance by DoF.

Signature of the Project in charge

Six Monthly Compliance Report on Expansion of Fertiliser Unit by installing Production stream of Ammonia (2200 MTPD) and Urea (3500 MTPD) at RCF Thal Fertilizer Complex for the period of October 2012 to March 2013. MOEF Memorandum No. F. No. J-11011./1291/2007-IA-II (I) dated 10th September 2012.

A. SPECIFIC CONDITIONS:

SPECIFIC CONDITIONS:	
CONDITIONS	COMPLIANCE
The company shall obtain prior CRZ clearance for marine disposal of treated effluent as applicable.	The treated effluent of the new project is proposed to be disposed off through existing facility of Marine Outfall line installed in 1984 since inspection of RCF Thal unit. The existing quantity of industrial effluent is 6458 m3/day. The proposed quantity of industrial effluent is 3650 m3/day. The total quantity of Effluent after expansion will be 10,108 m3/day. Presently consented quantity of effluent from MPCB is 12,000 m3/day. Thus total effluent quantity of Effluent will be less than the consented quantity. The design capacity of Marine Out fall line is 36,000 m3/day. There will not be any new construction/modification of existing Marine Out fall line. Therefore the condition for obtaining prior CRZ clearance for Marine disposal of treated effluent is not applicable.
All the conditions stipulated in environmental clearance J-11011/31/90-IA (II) dated 14 th October, 1991, J-11011/8/92-IA(II) dated 22 nd October, 1992, J-11011/65/96-IA(II) dated 15 th January, 1997 and J-11011/862/2008-IA(II) dated 10 th June, 2009 accorded for the existing projects shall be implemented	All the conditions stipulated in environmental clearance accorded for the existing projects are implemented. Six Monthly compliance reports are regularly submitted to Ministry.
The gaseous emissions (SO ₂ , NOx, NH ₃ , urea dust) and particulate matter from various process units shall conform to the norms prescribed by the CPCB/SPCB from time to time. At no time, the Emission levels shall go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit shall not be restarted until the control measures are rectified to achieve the desire efficiency. Stack emissions shall be monitored regularly.	The gaseous emissions (SO ₂ , NOx, NH ₃ , urea dust) and particulate matter from various existing process units are conforming to the prescribed standards. Stack emissions are regularly monitored. Emission data is regularly submitted to CPCB /MPCB and data is enclosed in <i>Annexure</i> Monitoring of emissions shall be done for expansion project also, once the project becomes operational.
	CONDITIONS The company shall obtain prior CRZ clearance for marine disposal of treated effluent as applicable. All the conditions stipulated in environmental clearance J-11011/31/90-IA (II) dated 14 th October, 1991, J-11011/8/92-IA(II) dated 22 nd October, 1992, J-11011/65/96-IA(II) dated 15 th January, 1997 and J- 11011/862/2008-IA(II) dated 10 th June, 2009 accorded for the existing projects shall be implemented. The gaseous emissions (SO ₂ , NOx, NH ₃ , urea dust) and particulate matter from various process units shall conform to the norms prescribed by the CPCB/SPCB from time to time. At no time, the Emission levels shall go beyond the prescribed standards. In the event of failure of any pollution control system adopted by the unit, the respective unit shall not be restarted until the control measures are rectified to achieve the desire efficiency. Stack

iv)	Adequate stack height shall be provided to Ammonia plant reformer, Heat recovery steam generator (HRSG), NG/RLNG fired gas turbine and prilling tower, Low NOx burners shall be provided to control NOx emissions. In Urea plant, particulate emissions shall not exceed 50 mg/Nm3. Monitoring of prilling tower shall be carried out as per CPCB guidelines.	Adequate stack height are provided to existing Ammonia plant reformer, Heat recovery steam generator (HRSG), NG fired gas turbine and prilling towers. Low NOx burners are provided to control NOx emissions. The same shall also be followed for Expansion project. In existing Urea plants, particulate emissions are below 50 mg/Nm3. Monitoring of prilling tower is carried out as per CPCB guidelines. The same shall also be followed for Expansion project.
vi)	Ambient air quality data shall be collected as per NNAQES standards notified by the Ministry vide G.S.R. No. 826(E) dated 16 th September, 2009. The levels of PM10 (Urea dust), SO2, NOx, Ammonia, Ozone and HC shall be monitored in the ambient air and displayed at convenient locations near the main gate of the company and at important public places. The company shall upload the results of monitored data on its website and shall update the same periodically. It shall simultaneously be sent to the Regional office of MOEF, the respective Zonal office of CPCB and the Maharashtra Pollution Control Board(MPCB)	For existing plants, Ambient air quality data is collected as per National Ambient Air Quality standards 2009. The levels of PM-10 (Urea dust), PM-2.5, SO2, NOx, Ammonia, Ozone, CO and HC are monitored at Continuous Air Monitoring stations & will be displayed at the main gate of the company. Ambient Air data will be uploaded on company website and will be updated the same periodically. Data will be send to the Regional office of MOEF, the respective Zonal office of CPCB and the Maharashtra Pollution Control Board (MPCB). The same shall also be followed for Expansion project.
vii)	In plant control measures for checking fugitive emissions from all the vulnerable sources shall be provided. Fugitive emissions shall be controlled by providing closed storage, closed handling & convenience of chemicals/materials, multi cyclone separator and water sprinkling system. Fugitive emissions in the work zone environment, product, and raw materials storage area shall be regularly monitored. The emissions shall conform to the limits stipulated by the MPCB.	Control measures are provided for checking fugitive emissions from all the vulnerable sources in the plant. Fugitive emissions are controlled and monitored in the work zone environment, production and raw materials storage. The emissions are conform to the limits stipulated by the MPCB. The same shall also be followed for Expansion project.
viii)	The gasses emissions from the DG set shall be dispersed through adequate stack height as per CPCB standards. Acoustic enclosure shall be provided to the DG sets to mitigate the noise pollution.	The adequate stack heights are provided for dispersal of gaseous emissions from the DG sets as per CPCB standards. Acoustic enclosure are provided to the DG sets to mitigate the noise pollution.

ix)	Additional water requirement from MIDC water supply for the expansion plant shall not exceed 24,360 m3/day and prior permission shall be obtained from concerned authority and a copy submitted ton the Ministry,s Regional office at Bhopal. No ground water shall be used. An action plan shall be submitted to the	Water requirement from MIDC water supply for the expansion plant will not exceed 24,360 m3/day. There is agreement with MIDC for drawing 90,000 m3 water per day. No ground water will be used for the process activities. In existing unit, Stripper condensate,
A	Ministry and its Regional office at Bhopal regarding measures taken for water conservation and maximum recycling /reuse of treated waste water in the existing unit and proposed for implementation during the expansion.	Turbine condensate, steam condensate & process condensate from Ammonia & Urea plants are recycled to Water Treatment plant for raw water conservation as well as deuterium enrichment. Treated domestic sewage effluent is also used for gardening
xii	Total industrial waste water generation after expansion shall not exceed 10108 m3/day and treated in the ETP. Industrial waste water shall be treated in ETP. As proposed, Urea plant process condensate shall be treated in a deep hydrolyser followed by striping. Ammonia plant process condensate shall be stripped with steam followed by activated carbon and demineralization. Treated condensate shall be recycled / reused in the process. Utilities waste water shall be treated in the ETP and treated effluent shall be recycle/ reused. Treated effluent shall also be monitored for the parameters namely ammonical nitrogen, Nitrate, Fluoride, pH etc. The treated effluent which can not be reutilized shall be disposed off through marine outfall (MOF) system after obtaining permission from MPCB and achieving norms stipulated by the MPCB/CPCB. Sewage shall be treated in STP and treated water shall be recycled /reused within factory premises. All the effluents after treatment shall be	within factory premises. Total industrial effluent generation after expansion will not be exceed 10108 m3/day and will be treated in the ETP. Industrial waste water will be treated in existing ETP. Urea plant process condensate will be treated in a deep hydrolyser followed by striping. Ammonia plant process condensate will be stripped with steam and treated condensate will be recycled / reused in the process in Water treatment plant. Utilities waste water like cooling tower blow down & Regeneration effluent will treated in the ETP. Treated effluent will be monitored for ammonical nitrogen, Nitrate, Fluoride, pH etc. The treated effluent which can not be reutilized will be disposed off through marine outfall (MOF) system as per the norms stipulated by the MPCB/CPCB. Sewage is treated in existing STP (Domestic Sewage Plant) and treated water is recycled /reused within factory premises for gardening.
	routed to a properly lined guard pond for equalization and final control. In the guard pond, automatic monitoring system for flow, and relevant pollutants (i.e. pH, ammonical nitrogen, Nitrate nitrogen etc) shall be provided with high level alarm system.	to a properly lined guard ponds (Balancing ponds) for equalization and homogenization. In the Balancing ponds monitoring system of pH, conductivity & dissolved Oxygen is provided.

xiii	Regular monitoring of ground water by installing peizometric wells around the guard pond and sludge disposal sites shall be periodically monitored and report shall be submitted to the concerned Regional office of the Ministry, CPCB and SPCB.	Ground water monitoring is regularly carried out around the Balancing pond and nearby villages. Soil monitoring & Sludge disposal sites are regularly monitored.
xiv	The company shall construct the garland drain all around the project site to prevent runoff of any chemicals containing waste into the nearby water bodies. Effluent shall be properly treated and treated waste water shall be confirm CPCB standards	The storm water or garland drain will be provided all around the project site to prevent runoff of any chemicals containing waste into the nearby water bodies. Effluent will be properly treated and treated waste water will be confirm as per the CPCB standards.
xv.	The company shall obtain authorization for collection, storage and disposal of hazardous waste under the Hazardous Waste (Management, handling and Trans boundary Movement) Rules, 2008 and amended as on date for management of Hazardous wastes. Measures shall be taken for fire fighting facilities in case of emergency.	For new project, company will obtain authorization / Consent to Establish & Consent to Operate from MPCB for collection, storage and disposal of hazardous waste under the Hazardous Waste (Management, handling and Trans boundary Movement) Rules, 2008. Control Measures are taken for fire fighting facilities in case of emergency.
xvi.	Spent catalysts and used oil shall be sold to authorized recycler / reprocessors only.	Spent catalysts and used oil are regularly sold to authorized / approved recycler / reprocessors only.
xvii ·	The company shall strictly comply with the rules and guidelines under manufacture, Storage and Import of Hazardous chemicals (MSIHC) Rules. 1989 as amend time to time. All Transportation of Hazardous Chemicals shall be as per the Motor Vehicle Act (MVA). 1989	The company is regularly obtaining certificate of storage for Hazardous chemicals from Chief Controller of Explosives. The company is strictly complying with the rules and guidelines under manufacture, Storage and Import of Hazardous chemicals (MSIHC) Rules. 1989. All Transportation of Hazardous Chemicals is carried out as per the Motor Vehicle Act (MVA). 1989.
xvii i	Remote operated valve placed on NH3 line to avoid leakage / equipment check shall be performed to ensure that remote operated valve (ROV) is all time is functional.	Remote operated valve placed on NH3 line are checked for leakages for time to time and it is always ensured that it is all time functional.
xix	The company shall strictly follow all the recommendations mentioned in the charter on corporate Responsibility for Environmental Protection (CREP)	The company is strictly following all the recommendations mentioned in the charter on corporate Responsibility for Environmental Protection (CREP).
XX	The unit shall make the arrangement for protection of possible fire Hazards during manufacturing process in	The arrangement is already made for protection of possible fire Hazards during manufacturing process in material handling

	material handling. Fire fighting system	area. Fire fighting system will be as per
	shall be as per the OISD 117 norms.	the OISD 117 norms.
xxi	Occupational health surveillance of the	Occupational health surveillance of the
	workers should be done on a regular	Employees and contractor workers is done
	basis and records maintained as per the	on a regular basis and records are
	Factories Act.	maintained as per the Factories Act.
xxii	Green belt shall be developed in 33 %	Green belt is already developed in 33 % of
	of the plant area. Selection of plant	the plant area. Selection of plant species are
	species shall be as per the CPCB	as per the CPCB guidelines.
	guidelines.	
xxii	Provision shall be made for the housing	Provision will be made for the constructing
i	for the construction labour within the	houses for labour at nearby site of the
1	site with all necessary infrastructure and	project with all necessary infrastructure and
	facilities such as fuel for cooking,	facilities. The temporary housing will be
	mobile toilets, mobile sewage treatment	made and will be removed after the
	plant, safe drinking water, medical	completion of the project. Due care will be
	health care, crèche etc. The housing	taken so that there will not be any impact
	may be in the form of temporary	on the surrounding environment.
	structure to be removed after the	on the surrounding environment.
	completion of the project. All the	
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	
	construction wastes shall be managed so	
	that there is no impact on the	
	surrounding environment.	

GENERAL CONDITIONS:

Sr.	CONDITIONS	COMPLIANCE
No.		
i)	The project authorities shall strictly adhere to the stipulations made by the MPCB.	Compliance assured.
ii)	No further expansion or modifications in the plant shall be carried out without prior approval of the Ministry of Environment and Forests. In case of deviations or alterations in the project proposal from those submitted to this Ministry for clearance, a fresh reference shall be made to the Ministry to assess the adequacy of conditions imposed and to add additional environmental protection measures required, if any.	No expansion at the site will be carried out without prior approval of MOEF and the same will be maintained in future. In case of any deviations or alterations in the project proposal, a fresh reference will be made to the Ministry to assess the adequacy of conditions with additionally required environmental protection measures.
iii	The locations of ambient air quality monitoring stations shall be decided in consultation with the State Pollution Control Board (SPCB) and it shall be ensured that at least one station is installed in the upwind and downwind direction as well as where maximum ground level concentrations are anticipated.	The locations of ambient air quality monitoring stations are decided as per the Dispersion Modeling Study and recommendations of Indian Metrological Division & IIT Mumbai & in consultation with State Pollution Control Board (SPCB). Two station are installed in the downwind direction. Four Ambient Air Monitoring stations to monitor the ambient air quality for SO2, NOx, NH3 PM -10, PM -2.5, Ozone, CO are already installed at the existing site for the present large scale operations. Besides, ambient air monitoring is carried out at 7 villages.
iv	The overall noise levels in and around the plant area shall be kept well within the standards by providing noise control measures including acoustic hoods, silencers, enclosures etc. on all sources of noise generation. The ambient noise levels shall conform to the standards prescribed under Environment (Protection) Act, 1986 Rules, 1989 viz. 75 dBA (day time) and 70 dBA (night time)	The overall noise levels in and around the plant area are kept well within the standards by providing noise control measures on all sources of noise generation as enclosed in Annexure The same shall also be followed for Expansion project.
V	The company shall harvest rainwater from the roof tops of the buildings and storm water drains to recharge the ground water and use the same for the process activities of the project to conserve fresh water	The company is maintaining Pond of very large size area for rainwater harvesting. Storm water drains are routed properly to recharged the ground water and same will be used to conserve fresh water.

vi	Training shall be imparted to all employees on safety and health aspects of chemicals handling. Preemployment and routine periodical medical examinations for all employees shall be undertaken on regular basis. Training to all employees on handling of chemicals shall be imparted.	Training is regularly imparted to all employees on safety and health aspect. Pre-employment and routine periodical medical examinations for all employees & contractor workers is undertaken on regular basis. Employees are trained for handling of chemicals.
vii	Usage of Personnel protection Equipments (PPEs) by all employees / workers shall be ensured	Usage of Personnel protection Equipments (PPEs) by all employees / workers is ensured.
viii	The company shall also comply with all the environmental protection measures and safeguards proposed in the documents submitted to the Ministry. All the recommendations made in the EIA / EMP in respect of environmental management, risk mitigation measures and public hearing relating to the project shall be implemented	The company is complying with all the environmental protection measures and safeguards measures as proposed in the documents submitted to the Ministry. All the recommendations made in the EIA / EMP in respect of environmental management, risk mitigation measures relating to the project will be implemented
ix	The company shall undertake all relevant measures for improving the socio-economic conditions of the surrounding area. CSR activities shall be undertaken by involving local villages and administration.	The company has undertaken all relevant measures for improving the socio-economic conditions of the surrounding area. CSR activities are already undertaken by involving local villages and administration. The unit has undertaken measures for CSR activities like farmers training institute, agriculture research center, greenbelt development, mangrove development, community welfare schemes, awareness training program for nearby villages.
X	The company shall undertake eco- developmental measures including community welfare measures in the project area for the overall improvement of the environment.	The company has already undertaken eco- developmental measures including community welfare measures like farmers training for advanced agriculture techniques, awareness training program in school of nearby villages & agriculture research center etc. for the overall improvement of the environment.
xi	A separate Environment management cell equipped with full fledge laboratory facilities shall be set up to carry out the Environmental Management and Monitoring functions	A separate Environment management cell equipped with full fledge laboratory facilities is already set up to carry out the Environmental Management and Monitoring liquid effluent parameters.

xii	As proposed, company shall earmark sufficient funds toward capital cost and recurring cost respectively to implement the conditions stipulated by the Ministry of Environment and Forests as well as the State Government along with the implementation schedule for all the conditions stipulated herein. The funds so earmarked for environment management / pollution control measures shall not be diverted for any other purpose	Company will allocate sufficient funds toward capital cost and recurring cost respectively to implement the conditions stipulated by MOEF & State Govt. for all the stipulated conditions. The funds earmarked for environment management / pollution control measures will not be diverted for any other purpose.
xiii	A copy of clearance letter shall be sent by the project proponent to concerned Panchayat, Zila Parisad/ Municipal Corporation, Urban local body and the local NGO, if any, from who suggestions / representations, if any, were received while processing the proposal.	A copy of clearance letter is already sent to all concerned.
xiv	The project proponent shall also submit six monthly reports on the status of compliance of the stipulated Environmental Clearance conditions including results of monitored data (both in hard copies as well as by email) to the respective Regional Office of MoEF, the respective Zonal office of CPCB and the Maharashtra Pollution control Board. A copy of Environmental clearance and six monthly compliance status report shall be posted on the website of the company.	The six monthly project compliance reports on the status of compliance of the stipulated Environmental Clearance conditions including results of monitored data will be send to respective Regional Office of MoEF, the respective Zonal office of CPCB. A copy of Environmental clearance and six monthly compliance status report will be posted on the website of the company.
xv	The environmental statement for each financial year ending 31 st March in Form-V as is mandated shall be submitted to the concerned State Pollution control Board as prescribed under the Environmental (Protection) Rules, 1986, as amended subsequently, shall be put on the website of the company along with the status of compliance of environmental clearance conditions and shall also be sent to the respective Regional Offices of MoEF by e-mail.	The environmental statement for financial year ending 31 st March 2012 in Form-V is submitted to State Pollution control Board as prescribed under the Environmental (Protection) Rules, 1986. The Environmental Statement for financial year ending 31 st March 2013 in Form –V will be submitted to MPCB. The status of compliance of environmental clearance conditions is being sent to respective Regional Offices of MoEF and will be put on web site.

xvi	The project proponent shall inform the	We have given press advertisement within					
	public that the project has been	seven days from the date of issue of the					
	accorded environmental clearance by	clearance letter, in three local newspapers					
	the Ministry and copies of the	which are widely circulated in the region					
	clearance letter are available with the	out of which one is in the vernacular					
	SPCB and may also be seen at Website	1 6.1 1 11.					
	of the Ministry at http://envfor.nic.in .						
	This shall be advertised within seven						
	days from the date of issue of the						
	clearance letter, at least in two local						
	newspapers that are widely circulated						
	in the region of which one shall be in						
	the vernacular language of the locality						
	concerned and a copy of the same shall						
	be forwarded to the concerned						
	Regional Office of the Ministry.						
xvii	The project authorities shall inform the	No activity has been started till date. The					
	Regional Office as well as the	planned zero date of the Project is 15 th June					
	Ministry, the date of financial closure	2013 subject to grant of PIB and CCEA					
	and final approval of the project by the	clearance.					
	concerned authorities and the date of	D : . G . : D					
	start of the project.	Project Cost is Rs. 4115 Crores.					

ANEXURE -I

STACK MONITORING REPORT (UREA & S. G. P):

OCTOBER - 2012 TO MARCH - 2013

Sr.	MONTH	PARAMETERS	S. G. P	UREA PLANT				
No.				PR	ILLING	TOWER		
		SO ₂	2.16					
1.	OCTOBER-12	NOx	15.4					
	OCTOBER-12	NH3		26	26.0	25.9		
		SPM	6.0	24.5	24.5	28.1		
		SO ₂	4.87					
2.	NOVEMBER-12	NOx	22.4		•••			
	NO VENIDER-12	NH3		26.1	25.9	26.2		
		SPM	5.8	27	29.4	24.6		
		SO ₂	5.14		•••	•••		
3.	DECEMBER-12	NOx	26.3		•••			
	DECEMBER-12	NH3		26.1	26.05	S/D		
		SPM	6.0	25.7	24.5	•••		
		SO ₂	4.9					
4.	JANUARY-13	NOx	25.1					
		NH3		25.1	25.5	25.6		
		SPM	5.6	23.0	22.1	22.3		
		SO ₂	5.12					
5.	FEBRUARY-13	NOx	25.9					
		NH3		26.0	26.2	25.8		
		SPM	6.1	27.2	25.0	26.3		
		SO ₂	5.6					
6.	MARCH-13	NOx	24.9.		•••			
		NH3		31	33.7	34.9		
		SPM	6.2	31.4	34.5	32.9		

All units of SO_2 , NOx, $SPM:mg/nm^3$, NH3:ppm

ANNEXURE - I

STACK MONITORING REPORT (Ammonia Plant):

OCTOBER - 2012 TO MARCH - 2013

MONTH	PARAMETERS	Auxiliary Boi	ler Stack	Reformer Stack		
		Line - I	Line - II	Line - I	Line - II	
	SPM	Nil	Nil	Nil	Nil	
OCTORER-12	SO ₂	3.3	3.2	2.9	2.8	
OCTOBER-12	NOx	25.0	25.1	24.7	24.9	
	SPM	Nil	Nil	Nil	Nil	
NOVEMBER-12	SO ₂	3.05	3.25	2.6	2.7	
NO VENIBER 12	NOx	24.9	25.3	24.4	24.5	
	SPM	Nil	Nil	Nil	Nil	
DECEMBER-12	SO ₂	2.9	3.3	2.6	2.4	
	NOx	25.1	24.8	24.4	24.7	
	SPM	Nil	Nil	Nil	Nil	
JANUARY-13	SO ₂	2.9	3.0	3.0	2.5	
	NOx	24.9	24.8	24.5	24.3	
	SPM	Nil	Nil	Nil	Nil	
FEBRUARY-13	SO ₂	2.8	2.7	2.6	2.7	
	NOx	25.0	24.9	24.2	24.7	
	SPM	Nil	Nil	Nil	Nil	
MARCH-13	SO_2	3.1	2.8	3.0	2.6	
	NOx	25	24.2	24.7	23.3	
	OCTOBER-12 NOVEMBER-12 DECEMBER-12 JANUARY-13 FEBRUARY-13	OCTOBER-12	Cotober-12 SPM Nil SO2 NOx 25.0	NOVEMBER-12 SPM Nil Ni	Care Care	

All units of $\ SO_2$, NOx , $SPM:mg\,/\,nm^3$

AMBIENT AIR DATA OCTOBER – 2012 TO MARCH - 2013

* VALUES FOR RPM , SO2, NH3, NOX, SPM $\,$ ARE IN μ gm / m^3

* VALUES FOR CO & HYDROCARBON ARE IN PPM

MONTH	SO ₂	NH3	NOx	SPM (South)	PM -2.5 (North)	PM -10 (N-E/E)	Methyl H.C.	Non Methyl H.C.	СО	RPM
OCT-12	7.73	32.49	33.91	43.57	17.13	39.28	0.25	0.41	0.52	28.4
NOV-12	8.37	31.74	30.37	45.56	17.57	41.97	0.31	0.35	0.47	30.2
DEC-12	7.82	31.98	32.85	50.61	17.16	45.44	0.24	0.47	0.61	31.6
JAN-13	8.39	33.77	34.09	52.0	20.31	48.29	0.22	0.44	0.62	31.8
FEB-13	8.7	35.68	31.44	54.57	25.07	45.91	0.28	0.46	0.58	29.8
MAR-13	9.08	35.98	32.88	50.60	24.07	45.62	0.26	0.44	0.56	29.9
N.A.A.Q. Standards	80	400	80	500	60	100				

WATER CONSUMPTION

OCTOBER – 2012 TO MARCH - 2013

MONTH	INDUSTRIAL	DOMESTIC	TOTAL
OCTOBER-12	15,22,353	1,84,647	17,07,000
NOVEMBER-12	14,78,565	1,89,935	16,68,500
DECEMBER-12	15,21,043	1,94,457	17,15,500
JANUARY-13	14,39,250	2,04,750	16,44,000
FEBRUARY-13	13,13,113	1,83,887	14,97,000
MARCH-13	14,73,945	1,96,055	16,70,000
TOTAL	87,48,269	11,53,731	99,02,000

ALL FIGURES ARE IN M³

LIQUID EFFLUENT DISCHARGE TO SEA AFTER TREATMENT OCTOBER – 2012 TO MARCH - 2013

PARAMETERS /							MPCB
MONTH	October	November	December	January	February	March	LIMIT
рН	7.4	7.8	7.7	7.5	7.6	7.5	6.5 - 9.0
CYANIDE	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	0.2
FREE AMMONIA	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	
AMMO NITROGEN	30.4	33.1	29.3	27.8	31.4	29.3	50
T.K.N.	39.6	43.4	38.7	36.7	43.2	42.6	150
NITRATE NITROGEN	2.3	2.8	3.0	2.8	2.6	2.7	20
TOTAL SUS. SOLIDS	48.7	51.6	49.4	52.4	47.5	52.6	100
OIL AND GREASE	2.8	3.0	2.7	2.9	2.5	2.9	Less than 10
DISSOLVED OXYGEN	5.9	6.1	6.0	6.1	6.0	6.1	
C.O.D.	71.5	82.3	78.4	72.6	76.5	69.6	250
B.O.D.	32.2	37.1	35.6	31.2	33.7	32.2	100
VANADIUM	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	0.2
ARSENIC	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	0.2
HEXAVALENT Cr.+6	N.T.	N.T.	N.T.	N.T.	N.T.	N.T.	0.1
PHOSPHATE	2.6	2.7	2.9	2.5	2.7	2.7	5.0
TEMPERATURE	28	27	27	27	27	27	-

R.C.F. THAL

VILLAGE AIR QUALITY DATA

OCTOBER - 2012 TO MARCH - 2013

MONTHS			PA	RAMETEI	RS / VILLA	GES		
		AGARSUR	SATIRJE	KIHIM	TUDAL	VAISHET	LONARE	ALIBAG
		E						
	SPM	83.4	88.41	87.07	85.5	84.82	89.16	84.03
OCTOBER	SO2	11.67	11.40	11.40	11.60	11.70	11.37	11.30
2012	NOx	11.60	11.47	11.83	11.43	11.63	11.50	11.50
	NH3	19.27	19.70	19.90	19.50	19.60	19.27	16.9
	SPM	90.3	86.5	88.2	85.1	89.3	87.6	83.4
NOVEMBER	SO2	12.6	13.4	16.9	16.3	17.5	13.5	12.2
2012	NOx	16.3	17.0	12.8	13.8	14.9	11.7	11.5
	NH3	24.2	20.8	23.2	21.3	24.6	19.3	17.3
	SPM	90.3	86.5	88.2	85.1	89.3	87.6	83.4
DECEMBER	SO2	12.6	13.4	16.9	16.3	17.5	13.5	12.2
2012	NOx	16.3	17.0	12.8	13.8	14.9	11.7	11.5
	NH3	24.2	20.8	23.2	21.3	24.6	19.3	17.3
	PM10	37.5	35.8	37.4	40.9	42.5	32.3	36.5
	PM2.5	19.2	15.5	19.1	19.2	21.3	15.1	18.8
JANUARY	SO2	12.5	14.7	15.3	14.8	19.5	11.8	17
2013	NOx	14.2	15.5	18	17.5	24	12.7	19.3
	NH3	19	20.7	21	26.8	32.7	18.7	21.3
	PM10	40	38.8	36.5	43.6	41.8	30.7	36.9
	PM2.5	19.5	19	18.7	23.5	22.1	15.6	17.6
FEBRUARY	SO2	15.7	15.6	16	17.5	21.8	13	15.7
2013	NOx	16.3	16.2	14.6	20	25.3	10.8	13.3
	NH3	19	20.2	21	25.1	26.5	18.5	23.7
	PM10	35.7	36.1	41.3	44.1	40.7	30.4	40.2
	PM2.5	18.4	19.6	20.5	19.8	20.6	14.7	20
MARCH	SO2	15	16.3	17.4	19	24.6	11.4	12.4
2013	NOx	18.3	15	20.2	16.4	27.4	11.8	15.1
	NH3	23	20.6	24.8	26.8	32.7	18.3	21.3

ALL Figs. in microgram / cu. meter

Ambient Noise Level Data at the boundary & nearby villages October 2012 to March 2013

Station	October 2012	November 2012	December 2012	January 2013	February 2013	March 2013
Near	68.7	66.4	66.5	66.2	67.2	69.5
Material						
Gate						
Near	67.1	65.5	66.5	67.2	65	63.8
Lonare						
Village						
RCF	67.4	68.2	69.5	68.5	70	69.1
Main						
Gate						
Vaishet	64.7	64.5	64.8	64.5	64.5	64.5
Village						
Tudal	64	65	65.5	66.2	65.7	65.2
Village						
Navgaon	67	67.9	70.3	70.6	70.1	69.7
Rail						
Gate						
Boris	64.4	63.6	64.2	65	64.7	65.2
Village						

8 Hourly Reading in dB (A)